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Abstract 

 
The Papuan Sentani language is spoken in the city of Jayapura, Papua. The law states the 
need to preserve regional languages. One of them is by building an Indonesian-Sentani 
Papua translation machine. The problem is how to build a translation machine and what 
model to choose in doing so. The model chosen is Recurrent Neural Network – Gated 
Recurrent Units (RNN-GRU) which has been widely used to build regional languages in 
Indonesia. The method used is an experiment starting from creating a parallel corpus, 
followed by corpus training using the RNN-GRU model, and the final step is conducting 
an evaluation using Bilingual Evaluation Understudy (BLEU) to find out the score. The 
parallel corpus used contains 281 sentences, each sentence has an average length of 8 
words. The training time required is 3 hours without using a GPU. The result of this 
research was that a fairly good BLEU score was obtained, namely 35.3, which means that 
the RNN-GRU model and parallel corpus produced sufficient translation quality and could 
still be improved. 
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1. INTRODUCTION  
 
Indonesia has 718 regional languages based on 2019 data and Papua province has 
326 regional languages [1]. As many as 80% of these regional languages have very 
vulnerable status, this is because the number of speakers is small because they are 
dominated by more dominant languages, which include the regional languages of 
Papua, West Papua, NTT and Maluku [2]. Papua has many ethnicities and sub-
ethnicities with many different languages which are starting to enter the stage of 
language extinction [3]. One effort to preserve regional languages is to build 
national to regional language machine translations so that users understand 
regional language speakers [4]. Machine translation is software that is capable of 
changing one language into another different language [5]. Therefore, this research 
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aims to build an Indonesian-Sentani Papua language machine translation using the 
Recurrent Neural Network – Gated Recurrent Unit (RNN-GRU) model which 
can translate Indonesian into Sentani Papuan. 
 
Previous research on machine translation from Indonesian to regional languages 
includes Indonesian to Lampung [6], Indonesian-Dayak language [7], Indonesian-
Sambas language [8], Indonesian-Sundanese language [9], Ketapang[10] and 
Kawi[11]. Meanwhile, GRU is the state of the art of internal RNN which has been 
used to build an Indonesian-Sundanese language machine translation [4].  
 
Machine translation is software that is able to translate source sentences into target 
sentences automatically [12]. Machine Translations are very helpful in translating 
source languages into target languages, for example from a foreign language to 
Indonesian or vice versa[13]. Various problems arise in translation activities, both 
carried out by humans and machine translators. Especially if the translation is 
context-based. These problems vary greatly due to geographic location, culture, 
habits and lexical differences [14]. Machine translation methods have experienced 
quite rapid development, starting from a rule-based method called Rule Base 
Machine Translation (RBMT) [15] [16] [17]. Based on statistics or what is called 
Statistical Machine Translation (SMT) [18], [19] [20], and which is the state of the 
art is an artificial neural network method called Neural Machine Translation 
(NMT) [21], [22][23].  
 
The NMT approach cannot simply carry out language translation, an NMT 
contains a model structure, a process layer consisting of the methods used. NMT 
uses a modeling called Sequence To Sequence (SeqToSeq) [24] which can support 
the language translation process. In the SeqToSeq model there are two stages, 
namely Encoder and Decoder [25]. where the Encoder is a process layer that will 
enter the source language and the Decoder is a process layer that results from the 
translation of the Encoder layer which is converted into a target language or 
translated language [26]. The Encoder-Decoder layer consists of a learning process 
network using the Recurrent Neural Network (RNN) method [27]. 
 
2. METHODS 
 
This research was carried out experimentally, starting from collecting data in the 
form of a parallel corpus of Indonesian-Papuan Sentani languages, then pre-
processing the corpus and then training using the RNN-GRU model to produce 
a translation model. The translation model is used to translate Indonesian 
sentences into Sentani Papuan. The final step is to test the translation results using 
a model with translation results carried out by humans (human translators) using 
the BLEU measurement standard. The research procedure can be seen in the 
following picture. 
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Figure 1. Research Procedure 

 
The explanation of the image above is as follows. 
 
2.1. Create Parallel Corpus 

 
The Indonesian-Papuan Sentani language parallel corpus was created by 
translating Indonesian sentences into Papuan Sentani language. This translation 
activity was carried out by native Papuan Sentani language speakers. The parallel 
corpus contains 281 pairs of Indonesian-Sentani Papuan sentences. 

 
2.2. Pre-processing 

 
Before training is carried out on the dataset using the model, pre-processing is 
carried out on the parallel corpus with the aim of making the training process more 
optimal. The types of pre-processing carried out in this research include: 
 
Lowercase, Lowercase changes all characters to non-capital letters, this aims to 
ensure that the same word is truly the same and is not differentiated by letters. For 
example, the words good and good are the same word. Lowercase is a pre-
processing standard for machine translation which results in a smaller number of 
unique words, thereby reducing features. 
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Punctuation, this process removes punctuation marks in all sentences. The aim of 
removing punctuation marks is so that there are no additional words that contain 
punctuation marks so that the number of unique words that are features becomes 
smaller. This will result in the training process being faster and more accurate. Just 
like lowercase, punctuation is widely used as a pre-process in building machine 
translation. 

 
2.3. Training Corpus using RNN-GRU  
 
The main step of this research is the training dataset. The dataset in the form of a 
parallel corpus is trained using the RNN-GRU model. The RNN-GRU model has 
been used several times to build machine translations such as German-English 
machine translations [20], French, Arabic and Chinese to Urdu, Chinese-English 
with varying results.  
 
RNN is a method that is often used in sequential data processing such as text 
processing and others [28]. An RNN represents a type of neural machine 
translation (NMT) system with three layers: an initial layer that assigns each word 
to a vector, like a word embedding or a one-hot word index; a looping hidden layer 
that continually computes and modifies the hidden state as it processes each word; 
and a final layer that predicts the likelihood of upcoming words while retaining the 
current hidden state [29]. The RNN scheme can be seen in the following image. 
 

 
Figure 2. RNN Scheme [29]. 

 
GRU is a variant of Long Short Term Memory (LSTM) [30]. The GRU employs 
a pair of gates: the reset gate and the update gate. The reset gate is responsible for 
controlling the retention or removal of past information within the model. By 
considering both the previous state and upcoming input possibilities, it determines 
which information should be retained. On the other hand, the update gate aids the 
model in determining the extent to which previous information from the 
preceding time step should be preserved for the future. When an input enters the 
GRU model, it will first be processed by the update gate. An update gate functions 
as a mechanism that decides the quantity of past information to transmit to the 
future, employing an activation function [31].  The GRU scheme can be seen in 
the following image. 
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Figure 3. GRU Scheme [32] 

 
Encoder-Decoder is a framework for the sequence to sequence method which 
consists of two parts. The first part is the Encoder which functions to vectorize 
words from the input sentence and the Decoder which functions to predict 
translated words from each vectorization value obtained from the Encoder [33]. 
The Encoder-Decoder scheme can be seen in the following image. 
 

 
Figure 4. Encoder-Decoder Scheme 

 
Each cell of the RNN model in the Encoder-Decoder schematic image in Figure 
3 uses the GRU model. The model schematic can be seen in Figure 3. Meanwhile, 
the training parameter settings can be seen in Table 1. 
 

Table 1. Training Parameters 

No Parameters Value 

1 Drop Out Layer 0.5 
2 GRU Unit 1024 
3 Activation Function Softmax 
4 Loss Function Sparse categorical crossentropy 
5 Validation Percentage 15 
6 Epoch 10.000 
7 Batch Size 64 
8 Optimizer RMSprop 
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2.4. Translating data test using MT model  
 
The training dataset in the previous step will produce a machine translation model 
(MT Model). The next step is to translate the data for testing using the model. The 
result is Sentani Papuan sentences which are the result of translations from 
Indonesian using a machine translation model that has been created. 
 
2.5. Evaluating Using BLEU  

 
After the translation results using the previously created machine translation 
model have been successfully obtained, the next step is to measure the quality of 
the translation results by comparing them with the translation results made by 
humans (human translators). The method used is Bilingual Language Evaluation 
Understudy (BLEU), The BLEU formula is as shown in Equation 1 [34]. 
 

𝐵𝐿𝐸𝑈𝑠𝑐𝑜𝑟𝑒 = 𝐵𝑃 ∗ 𝑒∑ 𝑤𝑘log⁡(𝑝𝑘)
𝑛
𝑘=1    (1) 

 
k is the number of n-grams being considered and wk is how much weight the 
classification has on each n-gram. BP is the Brevity Penalty, which will have a value 
of 1 if the length of the hypothesis sentence (h) > The length of the reference 
sentence (r). if it is the same or vice versa, the BP formula is as show in Equation 
2. 

𝐵𝑃 = 𝑒(1−
𝑟

ℎ
)
      (2) 

 
while pk is the precision score for different n-grams. The pk formula is as shown 
in Equation 3. 
 

𝑝𝑘 =
∑𝐶ℰ⁡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)∑𝑛−𝑔𝑟𝑎𝑚⁡ℰ⁡𝐶𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑛−𝑔𝑟𝑎𝑚)

∑𝐶′ℰ⁡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)∑𝑛−𝑔𝑟𝑎𝑚′ℰ⁡𝐶′𝐶𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚
′)

  (3) 

 
where C is the translated sentence while Countclip is the n-gram that matches the 
translated reference. The BLEU score for a usable machine translation is 30-60, 
more than 60, a score of more than 60 indicates that machine translation results 
exceed human translation. 
 
3. RESULTS AND DISCUSSION 
 
3.1. Dataset Description 
 
The dataset used is in the form of a parallel corpus, namely a pair of Indonesian 
and Sentani Papuan languages where on average each Indonesian sentence 
contains 8 words. Each Indonesian sentence is paired with a Papuan Sentani 
sentence with a separating sign in the form of Tab. The following table shows the 
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first five lines and the last five lines of the Indonesian - Sentani Papua parallel 
corpus. 

Table 2. Paralel Corpus 

No Indonesia Sentani-Papua 

1 Mari kita coba sesuatu Meng nda rambung 
mokhomabhong 

2 Aku harus pergi tidur Reya jonggu re erelere 
3 Saya harus tidur. Reya jonggu re 
4 Hari ini tanggal 18 Juni dan 

merupakan ulang tahunnya 
Muiriel! 

Manaya 18 Juni, Muiriel re 
honggate ya 

5 Hari ini tanggal 18 Juni dan 
Muiriel ulang tahun! 

Manaya 18 Juni, Muiriel na ralo 
yakhama ya 

… … … 
277 Seharusnya kamu datang lebih 

awal. 
Phu re anerhidere khena hele 
khale. 

278 Apakah kamu sudah minum 
obat? 

Rahe'phe ware mokhoroibhotere 
khena khoyea? 

279 Sudah minum obat? Raphi waneng're aneikondere 
khena khoyea? 

280 Kau harus pergi tidur sekarang Mai'nya ahusaei'se ra khena khale. 
281 Sudahkah kamu menyerahkan 

laporanmu? 
Perubahan phenate waneng 
jokho ereyea? 

 
The parallel corpus contains 281 pairs of Indonesian Sentani Papuan sentences 
with an average length of Indonesian sentences of 8 words. 
 
3.2. TrainingDatasets 

 
The training of the parallel corpus was conducted on a robust hardware setup, 
featuring an Intel Core i5 11th Gen processor, complemented by 16 GB of RAM 
and a 500 GB SSD, ensuring efficient handling of the computational load. The 
software environment was Linux Ubuntu 22, providing a stable and reliable 
platform, with Python 3 as the chosen programming language for its versatility 
and widespread support in machine learning tasks. Notably, the dataset training 
was completed in a duration of 7 hours, a process conducted without the aid of a 
GPU (Graphic Processing Unit). This highlights the efficiency of the system 
despite the absence of specialized graphical processing hardware. The accuracy of 
the training at each epoch was meticulously recorded and is presented in the 
accompanying graph. This visual representation offers a clear view of the model's 
learning progression and accuracy improvements over time. 
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Figure 5. Accuracy graph on training dataset 

 
The graph in Figure 6 shows that the level of accuracy on the training dataset is 
almost close to 100% when the number of epochs is between 40 and 60 epochs. 
 
3.3. Evaluation 
 
The final stage is to carry out an evaluation using BLEU. The results of this 
evaluation can be seen in the following image. 
 

 
 

Figure 6. BLEU Score evaluation. 
 

The image above can be explained using the following Table 3. 
 

Table 3. BLEU score explanation 

No Evaluation score 

1 BLEU 35.3 
2 Unigram 58.8 
3 Bigram 52.8 
4 Trigram 47.2  
5 4-gram 40.7 
6 Hypothesis length 439 
7 Reference length 487 
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The data in Table 2 provides a comprehensive evaluation of a translation tool 
using various metrics. The BLEU score, standing at 35.3, is a significant indicator 
of translation quality. In the BLEU scoring system, which ranges from 0 to 100, a 
score of 35.3 suggests moderate effectiveness. This indicates that while the 
translation tool can produce generally accurate translations, there is still 
considerable room for improvement, especially in capturing finer nuances and 
contextual meanings. 
 
The n-gram scores offer a more detailed insight into the translation tool's 
performance. The Unigram score of 58.8 suggests a high degree of accuracy in 
translating individual words. However, as we progress to more complex 
sequences, the accuracy decreases: the Bigram score is 52.8, indicating moderate 
success in translating two-word combinations; the Trigram score drops to 47.2, 
reflecting challenges in translating three-word phrases; and the 4-gram score 
further decreases to 40.7, highlighting difficulties in accurately translating 
sequences of four words. 
 
Additionally, the comparison of hypothesis length (439 words) and reference 
length (487 words) in the translation points to a discrepancy in content capture. 
This difference suggests that while the tool is effective in translating most of the 
content, some parts of the original text might be either lost or inaccurately 
represented in the translation process. 
 
In conclusion, while the translation tool shows a decent level of accuracy, 
particularly with individual words and short sequences, its effectiveness diminishes 
with longer and more complex word sequences. The BLEU score, alongside the 
n-gram analysis and the comparison of text lengths, collectively suggest that the 
tool is useful but requires enhancements to improve its accuracy in translating 
more complex text structures and to ensure a closer match to the original text's 
content and context. 
 
4. CONCLUSION 
 
The RNN-GRU (Recurrent Neural Network-Gated Recurrent Unit) model 
demonstrates potential in constructing a prototype machine translation system for 
Indonesian to Sentani Papuan languages. The evaluation of this model, based on 
the BLEU (Bilingual Evaluation Understudy) metric, yields a score of 35.3. This 
score indicates that while the translation quality is adequate, there is notable room 
for improvement. One viable approach to enhance the performance of this 
machine translation system could be to increase the quantity of the parallel corpus. 
Expanding the dataset with more diverse and extensive bilingual text examples 
could significantly refine the model's accuracy and effectiveness in handling the 
complexities of language translation between Indonesian and Sentani Papuan. 
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